

CZĘSTOCHOWA UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING

CARD OF COURSE DESCRIPTION

Name of course				Course code Semest		Semester		
Structural Mechanics II				WB_BUD_D_I_MB2_05 full		full year		
Type of class				Level of studies		ГСТС		
Lecture	Classes	Laboratory	Project	Seminar	Exam	BSc programme EC		ECTS
1	1	-	2	-	E	full-tin	ne studies	6
Speciality				Type of subject				
without	without division			obligatory				
Unit:				Department of Building Construction and Engineering		ineering		
Room 94				Phone / fax: +48 (34) 325 09 04				
Teacher Mak			Maksym (GRZYWI	ŃSKI, Ph.D. mgrzywin@bud.pcz.czest.pl			

I. C	I. CARD OF COURSE				
SUBJECT OBJECTIVES					
01	Acquisition of knowledge on effective solving systems of statically determinate				
O2	The skills of solving systems of statically indeterminate Forces Method				
О3	The skills of solving systems of statically indeterminate Displacement Method				
04	Ability to build influence lines for statically indeterminate systems				

PREREQUISITE & ADDITIONAL REQUIREMENTS				
R1	Knowledge of Mechanics and Strength of Materials			
R2	Knowledge of Mathematics in the field of mathematical analysis			
R3	Knowledge of basic concepts in the design of the bar			
R4	Completed course Structural Mechanics I			

LEA	LEARNING OUTCOMES				
S1	Has knowledge of Structural Mechanics II and the ability to use the conceptual apparatus of mechanics in the formulation of practical engineering construction				
Gen	General skills				
S2	He can use literature sources and other materials relating to the engineering problem to be solved. He can make a classification of buildings, construction of supporting structures.				
Basi	Basic engineering skills				
S3	Able to solve statically indeterminate systems by Force Method				
S4	Able to solve statically indeterminate systems by Displacement Method				
S5	Able to draw lines of influence for statically indeterminate systems				
Pers	Personal and social competences				
S6	Able to work independently and in a team				

CONTENTS OF STUDY				
Type of classes – Lecture		Number of hours		
L01	The theory of statically indeterminate systems. Degree of indeterminate	2		
L02	static systems. Introduction to the Force Method	2		
L03	The Force Method for continuous beams.	1		
L04	Equation three, four and five moments for continuous beams.	1		
L05	The Force Method for trusses. Displacements for statically indeterminate	2		
L06	systems. Static load: mechanical and non-mechanical.	2		

ı		
L07	The Force Method for plane frame.	2
L08		
L09	Displacement Method. Degree of indeterminate kinematic systems (rotations and displacement).	1
L10	The equations of transformation and the canonical equations Displacement Method.	1
L11 L12	Displacement Method - continuous beams, frames.	2
L13	The use of symmetry and antisymmetry structure in solving systems of extra forces.	1
L14	Lines of influence - continuous beams and trusses of extra forces.	1
L15	Repertory before written exam	<u>.</u> 1
LIJ		·
	Total:	15
Туре	of classes – Classes	Number of hours
C01	Determination of the degree of static indeterminate systems, to discuss ways of solving systems of statically indeterminate.	1
C02	Solving beams and frames statically indeterminate using the Force Method	
C03	of canonical equations, calculation of load displacement unit and the	3
C04	external loads to the core systems. The use of symmetry in the structure	-
	calculations.	
C05	Solve statically indeterminate 2D trusses using the Force Method. Calculation of displacement structures statically indeterminate induced	
C06	mechanical force and non-mechanical (non-uniform temperature rise at the	3
C07	extreme fiber bars, inaccurate assembly, inelastic subsidence supports).	
C08	Solving multi-span beams on supports fixed and resilient by force - the equation of three, four and five moments.	2
C10 C11 C12	Displacement Method. Determination of the degree of kinematic indeterminate systems. Solving continuous beams and 2D frames of statically indeterminate external loads and non-mechanical factors.	3
C13	Drawing influence lines for statically indeterminate beams using the equation of three moments.	1
C14	Repertory before finish test	1
C15	Finish test	<u>.</u> 1
013		•
	Total:	15
Туре	of classes – Project	Number of hours
P01	Application guidelines for the exercise of the project #1 statically indeterminate truss . Discussion of the Force Method for trusses. Adoption of the basic system, saving the canonical system of equations.	2
P02	Determination of forces in truss bars. Calculation of displacements for the basic system	2
P03	The solution of the canonical equations. The calculation of the forces in the bars of the real. Execution control calculations by checking the compatibility of deformations.	2
P04	Defense of the exercise project #1. Application guidelines for the exercise project #2 - statically indeterminate continuous beam	2
P05	Discussion of the three methods of moments. Adoption of the basic	
P06	system. Writing equations and calculating overtime bending moments. Plotting the internal forces of the beam statically indeterminate.	4
P07	Solution statically indeterminate beams of exercise project #2 using the Method of Displacements. Determination of the degree of kinematic indeterminate, the adoption of the basic system, the calculation of the	4

P08	actual displacement of the system. Calculation of the actual bending moments in principle of superposition. Comparison of the results with the method of the three moments.	
P09	Defense of the exercise project #2. Application guidelines for the exercise project #3 - statically indeterminate frame. Displacement Method for	4
P10	sliding frames. Determination of the degree of kinematic indeterminate frame, the adoption of the basic system	
P11	Determination of the actual movements of the canonical system of equations Displacement Method. The calculation of bending moments in	4
P12	principle of superposition. Comparison of the results with the Method of Forces.	4
P13	Calculation of displacements for the basic frame. The solution of the canonical equations.	2
P14	Plotting the internal forces statically indeterminate frame using the principle of superposition. Design validation calculations	2
P15	Defense of the exercise project #3.	2
	Total:	30

TEAC	TEACHING TOOLS				
1.	Lectures with audiovisual aids.				
2.	Exercises using audiovisual means and the blackboard and chalk.				
3.	Author's teaching aids				
4.	Literature.				

METH	METHODS OF ASSESSMENT (F - FORMATIVE, P - SUMMARY)				
F1	Assessment to prepare for classes. Checking presence.				
F2	Staging elements of the projects carried out independently by the student in accordance with the approved schedule				
F3	Evaluation of activity during the course				
P1	Rating colloquia of credits				
P2	Evaluation of the implementation of projects				
P3	Evaluation of practical knowledge in the field of design				
P4	Rating final exam in writing.				

STUDENT'S WORKLOAD

l n	Activity	Averaged workload		
L.p.	Activity	hours [ECTS]		
1.	Classes - lecture.	15		
2.	Contact hours of teacher - related lectures.	5	2	
3.	Read the indicated literature.	5] 2	
4.	Preparing for the exam.	5		
5.	Classes – practice.	15		
6.	Contact hours of teacher - related practice.	5	2	
7.	Preparing for finish test.	5		
8.	Classes – project.	30		
9.	Contact hours of teacher - related project.	5	2	
10.	Execution of projects.	10		
_	Total:	100	6	

BASIC AND SUPLEMENTARY LITERATURE				
1.	Carpinteri A.: Structural Mechanics. A Unified Approach, Taylor & Francis 1997			
2.	Darkov A., Kuznetsov V.: Structural Mechanics, Mir Publisher Moscov 1969			
3.	Durka F., Morgan W., Wiliams D.T.: Structural Mechanics, Pearson Education Limited 2003			
4.	Hulse R., Cain J.A.: Structural Mechanics, Palgrave Macmillan, 2000			
5.	Smith P.S.: Introduction to Structural Mechanics, Palgrave Macmillan, 2001			

MATRIX OF LEARNING OUTCOME CARRYING OUT								
Learning outcome for the course Reference to the effect defined for the field of study		Objectives of the course	Contents of study	Teaching tools	Methods of assessment			
S1	K_W05, K_W06	O1÷O4	L02÷L07, L12, C02÷C06, C08, C09, P01÷P09	1, 2, 3, 4	F1÷F3, P1÷P4			
S2	K_U01, K_U02 K_U22	O1÷O4	C01÷C06, C08÷C13, P01÷P15	1, 2, 3, 4	F1÷F3, P1÷P4			
S3	K_U09	O1, O2	C02÷C06, C08, C09, P01÷P09	1, 2, 3, 4	F1÷F3, P1÷P4			
S4	K_U09	O1, O3	C10÷C12, P10÷P14	1, 2, 3, 4	F1÷F3, P1÷P4			
S 5	K_U09	O1, O4	C13	1, 2, 3, 4	F1÷F3, P1÷P4			
S6	K_K01, K_K02	O1÷O4	C01÷C15, P01÷P15	4	F1÷F3, P1÷P4			

II. METHODS OF ASSESSMENT – DETAILS		
MARKS	LEARNING OUTCOME	
	S1	
2 (F)	Student does not have a basic knowledge of Structural Mechanics II and did not know how to use the basic conceptual apparatus and a simple construction solves engineering problems with errors.	
3 (E)	Student has a basic knowledge of Structural Mechanics II, and know how to use the basic conceptual apparatus and can solve simple problems of engineering construction	
3,5 (D)	Student has a basic knowledge of Structural Mechanics II, and know how to use the basic conceptual apparatus. In addition, he can perfectly solve simple problems of engineering construction	
4 (C)	Student has a wide knowledge of Structural Mechanics II, know how to use advanced conceptual apparatus and can perfectly solve simple and complex problems selected engineering construction	
4,5 (B)	Student has a wide knowledge of Structural Mechanics II, know how to use advanced conceptual apparatus and is able to solve simple and complex problems of engineering construction	
5 (A)	Student has a wide knowledge of Structural Mechanics II, know how to use advanced conceptual apparatus and perfectly able to solve simple and complex problems of engineering construction	
	S2	
2 (F)	Student can not replace primary literature sources necessary to solve the tasks of Structural Mechanics systems statically determinate	
3 (E)	Student is able to briefly mention primary literature sources and can not fully exploit their	
3,5 (D)	Student is able to briefly mention primary literature sources and attempts to use them properly	
4 (C)	Student knows the primary literature sources and can be used in a range of tasks to be solved	
4,5 (B)	Student knows the basic and additional literature sources and can be used in a range of tasks to be solved, knows how to make a classification of buildings, construction of supporting structures.	
5 (A)	Student can fluently replaced by reference and can fluently use it in terms of tasks to be solved	
	S3	
2.0 (F)	Student understands what the solution to the problem by force but it can not properly begin the task	
3.0 (E)	Student is able to solve a simple example using the Force Method, but the solution contains errors	
3,5 (D)	Student is able to correctly solve a simple example using the Force Method	
4.0 (C)	Student is able to correctly solve a simple example and selected complex systems	
4,5 (B)	Student is able to solve simple and complex example by the Force Method	
5.0 (A)	Student is able to correctly solve simple and complex example by the Force Method	

S4		
2.0 (F)	Student understands what is the solution of the Displacement Method but it can not properly begin the task	
3.0 (E)	Student is able to solve a simple example using the Displacement Method, but the solution contains errors	
3,5 (D)	Student is able to correctly solve a simple example using the Displacement Method	
4.0 (C)	Student is able to correctly solve a simple example and selected complex systems	
4,5 (B)	Student is able to solve simple and complex example by the Displacement Method	
5.0 (A)	Student is able to correctly solve simple and complex example by the Displacement Method	
S5		
2.0 (F)	Student understands what is drawing influence lines for statically indeterminate systems but can not properly begin the task	
3.0 (E)	Student is able to solve simple task of drawing influence lines for statically indeterminate systems, however, the solution contains errors	
3,5 (D)	Student is able to correctly solve the simple task of drawing influence lines for statically indeterminate systems	
4.0 (C)	Student is able to draw perfectly straight lines for the impact of statically indeterminate systems and complex systems for selected	
4,5 (B)	Student is able to solve simple and complex task of preparing the influence lines for statically indeterminate systems	
5.0 (A)	Student is able to correctly solve simple and complex task of preparing the influence lines for statically indeterminate systems	
S6		
2.0 (F)	Student is not able to work or individually or in a team	
3.0 (E)	Student can work individually with the help of the teacher, teamwork is conflicting and delayed the work team	
3,5 (D)	Student can work individually with the help of the teacher, teamwork is conflicting, but tries not to delay the work of the team	
4.0 (C)	Student can work individually and in a team, is systematic but not too creative	
4,5 (B)	Student can work individually and in a team, is systematic, trying to be creative and well- organized	
5.0 (A)	Student can work individually and in a team. It can be the most appropriate solution to the problem is creative and well organized, able to mitigate conflicts	

III. OTHER USEFUL INFORMATIONS ABOUT THE SUBJECT		
1.	Information, where and how students may acquaint with literature, author's teaching aids and others: according to the type of materials: According to the type of material – in the classroom, in the teacher's office and university or faculty library	
2.	Information about the place of classes: Show-case in the Faculty of Civil Enginering and faculty www page.	
3.	Information about time of classes (day and hour): Show-case in the Faculty of Civil Engineering and faculty www page.	
4.	Information about consultations (place and hours): The timetable posted on the door of Room 75 at the Faculty of Civil Engineering st. Academic 3 (second floor).	